Home Spark stage划分
Post
Cancel

Spark stage划分

rdd–>job–>stage–>task

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
sc.parallelize(1 to 10000, 2).map { i => Thread.sleep(10); i }.count()
def parallelize[T: ClassTag](
    seq: Seq[T],
    numSlices: Int = defaultParallelism): RDD[T] = withScope {
  assertNotStopped()
  new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
}
//SparkContext.scala
private[spark] class ParallelCollectionRDD[T: ClassTag](
    sc: SparkContext,
    @transient private val data: Seq[T],
    numSlices: Int,
    locationPrefs: Map[Int, Seq[String]])
    extends RDD[T](sc, Nil) {
//RDD.scala
def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum
////SparkContext.scala
def runJob[T, U: ClassTag](rdd: RDD[T], func: Iterator[T] => U): Array[U] = {
runJob(rdd, func, 0 until rdd.partitions.length)
}
...
def runJob[T, U: ClassTag](
  rdd: RDD[T],
  func: (TaskContext, Iterator[T]) => U,
  partitions: Seq[Int],
  resultHandler: (Int, U) => Unit): Unit = {
if (stopped.get()) {
  throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
  logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}
//DAGScheduler.scala
def submitJob[T, U](
  rdd: RDD[T],
  func: (TaskContext, Iterator[T]) => U,
  partitions: Seq[Int],
  callSite: CallSite,
  resultHandler: (Int, U) => Unit,
  properties: Properties): JobWaiter[U] = {
// Check to make sure we are not launching a task on a partition that does not exist.
val maxPartitions = rdd.partitions.length
partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
  throw new IllegalArgumentException(
    "Attempting to access a non-existent partition: " + p + ". " +
      "Total number of partitions: " + maxPartitions)
}

val jobId = nextJobId.getAndIncrement()
if (partitions.size == 0) {
  // Return immediately if the job is running 0 tasks
  return new JobWaiter[U](this, jobId, 0, resultHandler)
}

assert(partitions.size > 0)
val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
eventProcessLoop.post(JobSubmitted(
  jobId, rdd, func2, partitions.toArray, callSite, waiter,
  SerializationUtils.clone(properties)))
waiter
}

//EventLoop.scala
def post(event: E): Unit = {
eventQueue.put(event)
}

private val eventThread = new Thread(name) {
setDaemon(true)

override def run(): Unit = {
  try {
    while (!stopped.get) {
      val event = eventQueue.take()
      try {
        onReceive(event)
      } catch {
        case NonFatal(e) =>
          try {
            onError(e)
          } catch {
            case NonFatal(e) => logError("Unexpected error in " + name, e)
          }
      }
    }
  } catch {

onReceive的实现类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
//DAGScheduler.scala-->DAGSchedulerEventProcessLoop
override def onReceive(event: DAGSchedulerEvent): Unit = {
val timerContext = timer.time()
try {
  doOnReceive(event)
} finally {
  timerContext.stop()
}
}

private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
  dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)

handleJobSubmitted里先创建finalStage再commitstage

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
  private[scheduler] def handleJobSubmitted(jobId: Int,
      finalRDD: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      callSite: CallSite,
      listener: JobListener,
      properties: Properties) {
    var finalStage: ResultStage = null
    try {
      // New stage creation may throw an exception if, for example, jobs are run on a
      // HadoopRDD whose underlying HDFS files have been deleted.
      finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
    } catch {
      case e: Exception =>
        logWarning("Creating new stage failed due to exception - job: " + jobId, e)
        listener.jobFailed(e)
        return
    }

    val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
    clearCacheLocs()
    logInfo("Got job %s (%s) with %d output partitions".format(
      job.jobId, callSite.shortForm, partitions.length))
    logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
    logInfo("Parents of final stage: " + finalStage.parents)
    logInfo("Missing parents: " + getMissingParentStages(finalStage))

    val jobSubmissionTime = clock.getTimeMillis()
    jobIdToActiveJob(jobId) = job
    activeJobs += job
    finalStage.setActiveJob(job)
    val stageIds = jobIdToStageIds(jobId).toArray
    val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
    listenerBus.post(
      SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
    submitStage(finalStage)
  }
  private def createResultStage(
      rdd: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Array[Int],
      jobId: Int,
      callSite: CallSite): ResultStage = {
    val parents = getOrCreateParentStages(rdd, jobId)
    val id = nextStageId.getAndIncrement()
    val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
    stageIdToStage(id) = stage
    updateJobIdStageIdMaps(jobId, stage)
    stage
  }

注意这里的getOrCreateParentStages,后边也会调用,形成递归调用

1
2
3
4
5
  private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
    getShuffleDependencies(rdd).map { shuffleDep =>
      getOrCreateShuffleMapStage(shuffleDep, firstJobId)
    }.toList
  }

getShuffleDependencies 只会获取上一层的dependency

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
  private[scheduler] def getShuffleDependencies(
      rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = {
    val parents = new HashSet[ShuffleDependency[_, _, _]]
    val visited = new HashSet[RDD[_]]
    val waitingForVisit = new Stack[RDD[_]]
    waitingForVisit.push(rdd)
    while (waitingForVisit.nonEmpty) {
      val toVisit = waitingForVisit.pop()
      if (!visited(toVisit)) {
        visited += toVisit
        toVisit.dependencies.foreach {//本层rdd的dependencies
          case shuffleDep: ShuffleDependency[_, _, _] =>
            parents += shuffleDep
          case dependency =>
            waitingForVisit.push(dependency.rdd)
        }
      }
    }
    parents
  }

Get shuffle map stage

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  private def getOrCreateShuffleMapStage(
      shuffleDep: ShuffleDependency[_, _, _],
      firstJobId: Int): ShuffleMapStage = {
    shuffleIdToMapStage.get(shuffleDep.shuffleId) match {
      case Some(stage) =>
        stage

      case None =>
        // Create stages for all missing ancestor shuffle dependencies.
        getMissingAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep =>
          // Even though getMissingAncestorShuffleDependencies only returns shuffle dependencies
          // that were not already in shuffleIdToMapStage, it's possible that by the time we
          // get to a particular dependency in the foreach loop, it's been added to
          // shuffleIdToMapStage by the stage creation process for an earlier dependency. See
          // SPARK-13902 for more information.
          if (!shuffleIdToMapStage.contains(dep.shuffleId)) {
            createShuffleMapStage(dep, firstJobId)//内部调用getOrCreateParentStages,构成递归调用获取parent stage
          }
        }
        // Finally, create a stage for the given shuffle dependency.
        createShuffleMapStage(shuffleDep, firstJobId)
    }
  }

重点关注createShuffleMapStage,再这里边会对这一层(上层rdd依赖的shuffleDep.rdd)的rdd的parents

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
  def createShuffleMapStage(shuffleDep: ShuffleDependency[_, _, _], jobId: Int): ShuffleMapStage = {
    val rdd = shuffleDep.rdd
    val numTasks = rdd.partitions.length
    val parents = getOrCreateParentStages(rdd, jobId)//此处再次调用getOrCreateParentStages,获取本层rdd的parents
    val id = nextStageId.getAndIncrement()
    val stage = new ShuffleMapStage(id, rdd, numTasks, parents, jobId, rdd.creationSite, shuffleDep)

    stageIdToStage(id) = stage
    shuffleIdToMapStage(shuffleDep.shuffleId) = stage
    updateJobIdStageIdMaps(jobId, stage)

    if (mapOutputTracker.containsShuffle(shuffleDep.shuffleId)) {
      // A previously run stage generated partitions for this shuffle, so for each output
      // that's still available, copy information about that output location to the new stage
      // (so we don't unnecessarily re-compute that data).
      val serLocs = mapOutputTracker.getSerializedMapOutputStatuses(shuffleDep.shuffleId)
      val locs = MapOutputTracker.deserializeMapStatuses(serLocs)
      (0 until locs.length).foreach { i =>
        if (locs(i) ne null) {
          // locs(i) will be null if missing
          stage.addOutputLoc(i, locs(i))
        }
      }
    } else {
      // Kind of ugly: need to register RDDs with the cache and map output tracker here
      // since we can't do it in the RDD constructor because # of partitions is unknown
      logInfo("Registering RDD " + rdd.id + " (" + rdd.getCreationSite + ")")
      mapOutputTracker.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length)
    }
    stage
  }
This post is licensed under CC BY 4.0 by the author.